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1 Introduction

The research performed by our group at the Istituto di Struttura della Materia of the Univer-
sitk di Messina, Italy, under the terms of Contract DAJA45-86-C0003 can be summarized
as follows:

1. Comparison of the experimental data on the scattering properties of aggregated spheres
with the results of our calculations;

2. Study of the effect of clustering and correlation on the optical'properties of intermedi-
ate and high-density dispersions of spherical particles within the framework of an
enhanced version of the Bruggeman model.

3. Density dependence of the absorption coefficient, in the low and intermediate-density
regime, for a dispersion of metal particles.

As a result of the research mentioned abovc a number of communications have been pre-
sented to International Conferences, one paper containing final results has been submitted
to J. of the Optical Soc. Am. and a thesis for the graduation in physics has been submitted
to the Faculty of Sciences of the University of Messina.

2 Comparison with experimental data

The programs we developed in the last ten years to calculate the properties of clustered
spheres proved to be suitable to deal with a number of physically significant situations.
Nevertheless, since we were asked in several instances how our results compare with the
experimental data, we determined to asses the reliability of our calculations through direct
comparison with the data for single clusters published by Schuermann and Wang. These
authors in fact performed a series of measurements of the forward-scattering amplitudes
of single clusters composed of 2, 4 and 8 spheres both with real and with complex refrac-
tive index as a function either of the angle of incidence of the incoming plane wave or
of the separation of the components. The measurements were actually performed in the
microwave range on dielectric spheres with size parameter ranging from 3 to 8.

Thanks to the flexibility of our programs we were able to reproduce the measurements
within the experimental error, that according to the statement of the authorsis of the order
of 10 % in magnitude and 12' in phase. Furthermore, thank to our analysis of the transfor-
mation properties of the forward -scattering implitudo under changes of the direction of
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in incidence we are able to justify, on theoretical grounds, the shape of the curves reported
by Schuermann and Wang.The preliminary results of our calculations formed the subject of a Communication
to be published in the Proceedings of the European Aerosol Conference, held in Vienna,
Austria, on September 18-23, 1989.

3 Influence of clustering and correlation

The optical and dielectric behavior of high-density dispersions of sca=Rers is commonly
dealt with within the framework of the Effective Medium Theory using either the Brugge-
man or the -Maxwell-Garnett model. Unfortunately, both these models were developed
in the dipole appr3ximation, i. e. neglecting the effect of the higher multipoles and in
particular of the magnetic dipole. Although in recent times the Effectiw Medium Theory
was modified to deal with phenomena definitely attributable to magnetic-dipole effects,
even the mhost recent improvements are not applicable but to particles with very small
size-parameter.

To improve on this point and to overcome the limitations of the theory due to the com-
plete lack of interparticle correlation in the distribution we propose some modifications
to the original mixing rule of Bruggeman. The first improvement is tD use the full Mie
expansionto describe the the scattering properties of single particles: this allows us to
deal with scatterers with size-parameters up to 1.

As a second improvement we introduced into a distribution of dielectric and metal
particles a correlation of exclusion designed to prevent contact among the metallic one.
This effect is achieved by putting around each particle a thin dielectric layer with c = 1.
Then, by gradually increasing the thickness of the exclusion layer we were 'able to follow
the transition fi-om a behavior typical of the Bruggeman model to one more appropriate to
the Maxwell-Garnett model.

As a final improvement we included into our calculations the possibility that the par-
tic!es aggregate in pairs thus forming anisotropic scatterers either all oriented alike or at
random.

The results we got can be summarized as follows. The effective Medium Theory can-
not be appiied to media composed of particles with size-parameters of the order unity: our
calculation show that a size-parameter of the order 0.1 is a practical limit for the reliabil-
ity of the theory. Furthermore, the clustering may have visible effects on the percolation
threshold of a dispersion of metal spheres, specially when the clusters are allowed to orient
all alike. Finally the introduction of the correlation of exclusion produces a rather sharp
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transition from the Bruggeman model to the Maxwell-Garnett model. Nevertheless the
transition is not so sharp as to prevent us from following the change of the behavior of the
dispersion.

The calculations summarized above form the subject of a Communication to the 2d
Int. Conf. on Optical Particles Sizing held in Phoenix, Arizona, 4-7 march, 1990. A
complete paper including all our results has been submitted to J. Optical Soc. Am.

4 Density dependence of the absorption coefficient

The problem of the density dependence of the absorption coefficient of a dispersion of
particles is of paramount importance both from the theoretical and from the experimental
point of view. It is well known, indeed, that one often speaks of low-density or of high-
density dispersions, but on the nrecise definitions of these terms there exist only some rule
of thumb based on the -knowledge gained from experiments. For this reason we put Mr
Fucile, one of our undergraduate students, in charge of a researcl, aimed at developing
a suitable method to determine the density dependence of then absorption coefficient of
a dispersion of spherical particles, as part of a graduation thesis to be submitted to the'
Faculty of Sciences of our University.

The method used by Mr Fucile is based on the fact that the density dependence of
the optical properties of a dispersion is due to the progressive increase of the multiple'
scattering effects and that effects of this kind are fully accounted for by the method we
used till now to deal with clusters of spheres. Therefore the dispersion was considered
as composed of pairs of spherical scatterers. The properties of each pair were calculated
through our usual method including the analytic average over the orientations. The product
of this calculation is the average forward-scattering amplitude of a pair which still depends,
however, on the separation of the component spheres. At this stage we take advantage of
the results of statistical physics to set up the pair correlation function appropriate for the
density under consideration and to use it to perform an average over the separation of the
particles. As a result we get an effective spherical scatterer dressed by the effects due
to the presence, in tlhe dispersion, of other particles. At this stage the calculation of the
optical properties of the dispersion is only a matter of using well known formulas.

As noted above, this research is the subject of a graduation thesis (in italian, of course),
but we also extracted a preliminary Communication to the 3d Conference of the European
Colloid ind Interfaces Society to be held in Copanello, Italy, next September. We plan to
submit a complete paper after the graduation of Mr Fucile.
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ANNEX

All the money received with the preceding payments has been spent to buy the hardware
we need for our work.
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AN ENHANCED BRUGGEMAN SCHEME AND THE PERCOLATION THRESHOLD

OF A DISPERSION OF METAL PARTICLES

F. 3orghese, P. Denu, R. Saija

UniversitA di Messina, Isticuto di Structura della Materia
Salitm Sperone 31,98166 S. Agata-Messina, Italy

0. I. Sindoni

Chemical Research Development and Engineering Center
Aberdeen P. G., 21010 Md, USA

1. INTRODUCTION

It is well known that the propagation of the electromagnetic waves trough a composite can be studied by the effective medium
theory provided that the particles be small enough with respect to the wavelength that a dielectric description of the composite
as a whole is still meaningful' .2 A possible way to deal with this problem is, indeed, to think of the the macroscopic properties
of a composite as a space average of its local properties and consequently to substitute the actual medium with an effective one.
In practice the effective medium theory achieves this goal through the definition of a homogeneous medium capable of fitting
the zveragc propagation properties of the composite in such a way that. if this latter is embedded into the effective medium, no
scattering is experienced' .2. Unfortunately thee is no universal recipe to build the dielectric constant of the effective medium,
since the properties of a composite, depend on the nature, the shape and the size as well as on the concentration and on the
possible correlation in the distribution of the constituent particles.

A particularly simple model composite medium, that in the framework of the effective medium theory leads to the so called
Bruggeman mixing rule, is composed of spherical particles of very small size parameter with totally uncorrelated space distribu-
ion. If into the mocll above is forced enough correlation as to ensure that the particles are well separated and dispersed within

a homogeneous matrix, one is lead, instead, to the Maxwcll-Garnett mixing rule2 . Of course. apart from such a rough treatmcnt
of the correlation. the approximations of the two models above arc rather severe as in actual composite media the size parameter
of the particles is often not very small and the particles themselves may have a definitely nonspherical shape. In this respect
the possibility of aggregation of several spherical particles should also be considered as this phenomenon produces effectively
nonspherical scaucrers3 . Even by assuming that all the particles are actually spherical, their radii are seldom identical but are in
general distributed within a more or less wide range. The literature reports several attempts to overcome at least some of these
approximations: for instance, a dynamical extension of the Bruggemin rule applicable to size parameters up to 0.01 has been
proposed by Stroud and Pan 1, while a similar extension of the Maxwell-Garnett rule and a distribution function for the radii
have been introduced by Ch~lek and Srivastava 4.

In this paper we introduce a modified Bruggeman model to be applied when the size parameter of the particles is extended
up to 0. 1. Our extension is effected by describing the particles through the exact Mie amplitudes5 ,6 and including up to the
quadrupole terms for the largest spheres. We tentatively considered also a medium composed of particles with' size parameter
up to 1- .0 by including terms up to the 24-poles to ensure the convergency of our calculations. Ntvertheless, we do not
regard the results we obtained for this latter medium as reliable although they come out as a natural and smooth evolution of
the results for spheres with smaller size. Indeed, we think that any attempt to describe the properties of a medium too coarsely
graincd with respect to the wavelength of the propagating radiation by the effective medium theory is bound to fail.

WVe apply our modified model to study also how the correlation affects the behavior of the percolation of a composite made
of metal and of dielectric particles. The kind of correlation we forced onto this composite is a correlation of exclusion among
the metal particles that we introduced within the framework of our Bruggeman-Mie model by putting around each metal sphere
a very .nin dielectric layer. Then, by increasing the thickness of the layer we are able to follow by our calculations the rather
sharp decrease of the absorption that comes with the implied transformation of the topology from that of Bruggeman model to
that of the Maxwel-Garnett one

2. THEORY

The effective medium theory defines o, as the dielectric constant of the homogeneous medium that can be substituted to the
real medium without affecting the propagauon of the electromagnetic waves. This is accomplished by requiring that cfr satisfies



the null scatering condition and is thus the solution to the equation,

2Nf,,i(e) .o, ()

with

where i, is the'polarization vector of the plane wave and •.j is the normalized forward-scattering amplitude of any of the Ni
identical parucles of the i-th kind when rnmersed into the homogeneous effective medium of dielectric constant tr.

According to Mie, the normalized forward-scattering amplitude of a homogeneous spherical particle with refractive index
n = v embedded in a homogeneous medium of refractive index n. - in the present case n.. -- Vre-2 is given by

kna4 , e•,IM WPT-A(, (2)

where the polarization index 17 has been dropped for the sake of simplicity, k - w/c and
A(P) - -(P) WL(P)(3t = - W.-(3)

In eqs.' (2) and (3) the V,(w) Is are the multipole amplitudes of the incident plane wave, the A( 's are those of the scattered field
and

I( + F6P )Ut' e -( I+ W42))Ut (4)

with

ut -t yzjt(yeig) vt'i yt ht( Ut yjt(j), T -n - 1, y.,z -e,4z, 9=r n.

x kp is the size parameter of the particle with radius p and p, is a parity index that distinguishes the friagnctic multipolcs
(p 1 I) from the electric ones (p r 2). Accordingly, Rel refers to the magnetic and R, to the electric 2t-pole. When

< I cq. (4) can be expanded in terms of y.,t and one gets

I 4 5 l (5),J

while the Re P 's for t'> I are smaller. As a consequence, in the limit zx .- 0, only the R1W's as given in eq. (5) can be
considered in eq. (1) and one obtains the well known Bruggeman mixing rule4

S" +2e=0, (6)

where V, = Nv•u/V is the fraction of the total volume of the composite filled by the N, spheres each of volume vi, dielectric
constant e, and size parameter z,. In order to get a dynamical extension of the Bruggeman mixing rule, Stroud and Pan' do not
ncglcct the R(') term and thus include into the expansion of eq. (2) also the magnetic dipole term. Since they take Rl') and
pR2) in the form of eq. (5), their mixing rule reads

• [ 1 2 •f 30 - te , 0 (7)

and thus appears as an extension of eq. (6) to rather larger, although still small, sizes. The mixing rule of Chlek and Srivastava'
lies on the very same approximations but these authors include size-dependent terms only when e is very laIge - for instance,
this is the case of metal spheres. They also include a size-distribution function )(p) and write

i" + E 2k2((jf 5 3 X(p)d p0. (8)

i j:-Ie,, 4
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Obviously, the size-dependent terms in eq. (8) assume the same form they have in eq. (7) when )If(p) = N,6(pj - p).
Since the only common imp!ementations of eq. (1) are the zero-size approximation, eq. (6), and the small-size approxi-

mation, eqs. (7) and (8), we determined to test the reliability of the null scattering condition, eq. (1), when applied to larger
particles. In practice, all the calcuiations we will present in the next section were performed by carrying to full cunvergency the
exact Mie expansions to the effect of ensuring the inclusion of all significant contributions to the scattering ampiitude, eq. (2).
In this way we overcame all the limitati(. qs due to the small size of the particles but those that prevent the possibility of dealing
with the whole medium through a dielectic description.

As mentioned in the preceding section, we also considered a model composite medium which, in a sense, is a hybrid be
S tween that of Bruggeman and that of Maxwell-Gamett namely we calculated eff for a dispersion of homogeneous dielectric
spheres with e a eo and of spheres with a metal core, of dielectric constant cd, coated by a thin dielectric layer. The scattering
properties of the coated spheres were not described through an approach based on the boundary conditions at the separation
surface but rather by interposing between the core and the coating a very thin transition layer7 through which

e c(r) em + (3s2 2j 3 )A

with

A A tD ej4 an r-PA1
PD - PtA

where pm is the radius of the metal core and po the inner radius of the dielcticc coating. In this way we achiev.J i smooth
transition between the two materials as fh refractive index n = n~r) is a regular function of r everywhere within the coated
spheres. Consequently e. (4) must be substituted by $,6

eI tPý P - .(9)
G, I've - (l+ ift): G1•,,•'

where G' = G")(W) arc now calculated by numerical integration of ;he radial equations

d ýP 2 dnd + - LILL ) I d,, .o
(I nT dý 2 j

with • = kr. Of course, when the spheres are homogeneous, (o - em and eq. (9) reduces to eq. (4). As a matter of fact.
all the calculations we will present in the next section were performed by using eq. (9). or eq. (4) when appropriate, with
no approximation. It is also worth noticing that our previous calculations oroved that the introduction of the transition laver,
provided it is thin enough, has no influence on the results.

3. RESULTS AND DISCUSSION.

All the composite media we dealt with in our calculations are two-component ones; the first component is a dielectric with
eo =.1 and the sexond is a metal with

I. = I ( 1 (10)

where L = w/wp, -f = I /( )) viz. the dielectric material is the vacuum while the metallic component is described by the
free-clectron Drude constant9 . This choice allows us an easy companson with the preceding results of Stroud and Pan, and of
Chylek and Srivastava'. Anyway, we think that a greater sophistication of the description of the metallic componernt is of no
usefulness within a framework substantially as naive as the effective medium one.

If we assume the particles to be spherical, eq. (1) becomes

Vuf.M(far) + (pta/po) 3 (I - VM)f 0 (efe) 0 0, (11)

where Pm is the radius of the metal spheres and PD the radius of the die!ectric ones, and the f's are given by eqs. (2), (3) and
(4).

When the metal spheres are coated by a dielectric layer we have

VfMC(eff) + (og/po)'(l - Vu(I + cl1,D(fre) = O, (12)

Nhere f,'.c refers to a sphere with a metal core of radius p.W and a dielectric coating layer with external radius

P1. = ( o + PM,



and is thus given by eqs. (2). (3) and (9). The quantity cL is defined as

CL , = L/v,4,

where UL is the volume of the dielectric layer, in other words CL gives the volume of the dielectric coating around each metal
sphere as a fraction of the volume, vIA, of the metal spheres themselves. Of course

I +vM••vu•=r-u'U, o•CL. •C ,.. =maa -l,

so that When c, = 0, i.e. when the spheres have no coating, we get again the topology of the Bruggeman model, whereas, when
cL = cL,,,.we get the Ma,•welI-Gamett topology.

Wecalculated ef according toeqs. (11) or (12) as a function of Vu for some values of zj = kPM andofL;,-= 0.01 inall
cases. In particular we report in figs. I and 2 Im(ef r] as calculated from eq. (11), and from the two-component implementations
of eq. (6). of eq. (7) with DD p p., and of eq. (8) with a 6-like distribution of the radii. Our main purpose is to show the most
important features of the absorption of a composite medium at frequencies for which the metal component is by itself strongly
absorbing. Therefore, we chose to plot our results for P = 0.01, Fig. 1, and for tv 0.1, Fig. 2. since, for many metals, these
frequencics occur in the far and in the near infrared, respectively. It is worth noticing that both our eqs. (11) and (12) and their
counterpart according to Stroud and Pan, eq. (7), show a dependence on the size. of the dielectric spheres. When one assumes
eD= I, i.e. when the dielectric is the vacuum, the problem arises'whether its more or less minute subdivision into spherical
cells may affect the results. As a matter of fact. we took xD = kPD - 10 -' as our calculations evidence that the size of the
vacuum spheres has very small influence either when their size is reduced to zero according to Chylek and Srivastava or when
it is set cqual to tha- size of the metal spheres according to Stroud and Pan. Indeed, the results are nearly indistinguishable fr
all the sizes of the metal spheres at which the implementations o! the effective medium theory we deal with can be assumed to
work correctly. The range of Vw both in Fig. I and in Fig,. 2 has been chosen so as to show the influence of the size and of the
frequency on tbe transition from a diclcctnc behavior to a metallic one. In fact. we think thatxu = 0. 1 is an appropriate upper
limit for the applicability of eq. (11), viz. it is a practical limit to the size of the grains of a composite medium in order that this
latter, from the point of view of the dielectric properues. can be substituted by a homogeneous medium. Anyway, on the basis
of our calculations we conclude that, for particles of size greater that 0.1 but rather smaller than 1. the form of Imn edy] from
eq. (11) is sull meaningful both in the small-Vm region up to where the transition to the metallic behavior starts to appear and
in the high-VA, region. In this connection we recall that eq. (6) should never be applied when z > 0.01 and that cqs..(7) and
(8) cannot be thought of as accurate when xv = 0.1, because these equations come out from a series expansion, ea.(5), of the
exact Mie iuanuities, eq. (4). We notice that in Fig. I the curve for Tr - 0.01 is generated not only by our Brugeman-Mic
implcmcnLiton, eq. (Ii), but also by the implementations of Stroud akid Pan, eq. t7), and of Chylek and Snvastava, eq. (8); the
curves from eqs. (7) and (8) for zx = 0. 1 do not appear in Fig. I for the approximatons u., which eqs. (7) and (8) are baIsed
result in solutions that are physically unacceptable. In fact, these equations, that are algebraic equations of the third degree,
yield value!; of Im[ tm that are either negative or everywhere vanLihingly small or very large even in the low V,. region. In
turn. in Fig 2 the curves from eqs. (7) and (8) for zx = 0.1 coincide with each other and are substantially difftrent from that
coming frorm eq. (11). Moreover, into the curve labelled (I), which refers to the results from our Bruggeman-Mie model for
x=0 .01 ,.coalesce the results from eqs. (7) and (8) for the same size as well as the results from the Bruggeman rule.

In Figs. .3 and 4 we plot Im{ ej] for v - 0 01 and for several values of cL as calculatqd according to eq. (14); analogous
results were obtained for v = 0. 1. It is quite evident that the correlation of exclusion produced by the dielectric coating around
the metal spheres has very strong effects even at very low valies of cL. Actually, the model descnbed in eq. (12) prevents a2.y
contact among the metal particles and is therefore topologically akin to the Maxwell-Garncut model. As a consequence, it is
not surpnsing that, when CL increases, our results tend very fast to those that are typical of the latter model. Figs. 3 and 4 show
the csults for z = 10-'. At this value of D the contribution of the vacuum spheres to the scattering amplitude is very well
approxi.7,oted by the first of of eqs. (5) and such a small size suggests the idea of a dielectric medium which pervades and fills
all die space around the coated spheres. Actually, any size of the dielectric spheres up to zDo = zx proved to be incapable of
affecting the results of our calculatioiis from eq. (12). Of course, a more flexible model than that of eq. (12) can be built by
introducing a distribution function for the tLickness of the dielectric coating, including the possibility of zero thickness. Such
a model would allow for contact among (only a fraction of) the metal spheres, so that an appropriate choice of the distribution
functio,. should ensure a smoother transition from the results of the Bruggeman model and those of the Maxwell-GarneR model.

The results we aiscussed above show that our Bruggeman-Mie approach yields meaningful results even when applied to
particles with 7, _- 0.1 and in this respect proves superior to the customary approaches, eqs. (6)--(8). In turn, our attempt to
introduce some correlation among the metal particles, eqs. (12), proved too effective, perhaps. As remarked above, the amount
of correlation we introduced into our models i, so large that the results we reported can give only semiquantitative information,
i.e. they can indicate the trend one has to expect in more realistic situatlons, that could be effectively simulated along the lines
outlined above. As they stand, the models we presented in this paper can give, in our opinion, useful indications on the dielectric
bihavior of the composite media.
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Abstract

Some ernhancemcnts to the Bruggeman mixi 1g rule designed to deal with com-
positcs made of particles of relatively large size, 1 ossibly correlated in thcir distribu-
tion, arc proposed. The resulting impIcmcntatiois are applied to a composite made
of metal and of diclecric spheres either uncorreatcd or subject to a correlation of
aggregation among the metal particles, or to a correlation of exclusion that prevents
contact among the metal spheres. Our calculatios show that our enhanced schemes
work well up to sizes _ 0. 1 and that both kinds Of correlation abo.e may have very
strong cffects on the transition of the composite from the dielectric to the metallic
behavior.
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1 Introduction

In the last few years there h been an ihicrease of interest in the propagation of electromag-
netic waves through com p4site media in view of the practical relavance of several such
materials [1,2,3]. A possible way to deal with this propagation problem is to think of the
macroscopic properties of composite as a space average of its local properties and conse-
quently to substitute the acu al medium with an effective one. In practice this is achieved,
according to the effective ediwn theory, by building a homogeneous medium capable of
fitting the average propaga 'on properties of the composite in such a way that, if this latter
is embedded into the effec 've medium, no scattering is experienced [4]. There is no uni-
versal recipe to build the di lectric constant of the effective medium, since the composites,
by their very nature, may ave the most diverse constitutions and topologies. In fact, the
properties of a composite tepend on the nature, the. shape and the size as well as on the
concentration and on the pssible correlation in the distribution of the particles. A partic-
ularly simple model comr psite medium, that in the framework of the effective medium
theory leads to the so call d Bruggeman mixing rule, is composed of spherical particles
of very small size paramet r with totally uncorrelated space distribution. If into the model
above is forced enough co relation as to ensure that the particles ame well separated and
dispersed within a homog neous matrix 121, one is lead. insted, to the Maxwell-Garnett
mixing rule. Of course, al4art from such an extreme treatment of the correlation, which
leads to so different topolggies. the approximations of the two models above are rather
severe. In actual composite media, indeed, the size parameter of the p'articles is often not
very small and the particleT themselves may have a definitely nonspherical shape. In this
respect the possibility of a~gregation of several spherical particles should also be consid-
ered as this phenomenon produces effectively nonspherical scatteirrs. Even by assuming
that all the particles ame actually spherical, their radii are seldom identical but are in general
distributed within a more Or less wide range. Of course some work has been done to over-
come at least some of these approximations: for instance, a dynamical extension of the
Bruggeman rule applicable to size parameters up to 0.01 has been proposed by Stroud and
Pan [4]. while a similar extension of the Maxwell-Garnett rule and a distribution function
for the radii have been intnoduced by'Ch)flek and Srivastava (1].

In this paper we introluce a modified Bruggeman model to be applied when the size
parameter of the particles i; extended up to 0 1. Our extension is effected by describing the
particles through the exac Mie amplitudes (5,61 and including up to the quadrupole terms
for the biggest spheres. V 'e tentatively considered also a medium.composed of particles
with size parameter up ti -, 1.0 by including terms up to the 2'-poles to ensure the
convergency o. our calculations. Nevertheless, we do not regard the results we obtained
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for this latter medium as reliable although they come out as a natural and smooth evolution
of the results for spheres with smaller size. Indeed, we think that any attempt to describe
trough the effective medium theory the properties of a medium too coarsely grained with
respect to the wavelength of the propagating radiation is bound to fail.

We apply our modified model to study also the effect of the interparticle correlation
--- on the behavior of the percolation of a composite made of metal and of dielectric parti-

cles. The first kind of correlation we forced onto the composite medium is a correlation
of exclusion that we introduced within the framework of our Bruggeman-Mie model by
putting aroundeach metal sphere a very thin dielectric layer. Then, by increasing the
thickness of the layer we are able to follow by our calculations the rather sharp decrease
of the absorption that comes with the implied transformation of the topology from that of
the Bruggeman model to that of the Maxwell-Garnett one.

When the metal particles of the composite are allowed to aggregate two other kinds of
correlation set on: the one that produces the aggregation itself and the possible correlation
in the orientations of the resulting anisotropic particles. We assess how the aggregation

'affects the dielectric behavior of the composite, at least for the simple case of binary aggre-
gation, by performing some calculations through an approach we developed in the last few
years. In fact, that approach describes the scatteriaig by aggregates of spherical particles
[7] through multipole amplitudes analogous to those of Mie as well as the macroscopic
-optical constants of a low-density dispersion of such aggregates either when they are ori-
ented at random or alike [81. Our results for the metal-dielectric composite referred to
above show that the aggregation shifts the percolation towards lower concentrations of
the metallic component when the aggregates are randomly oriented, when the aggregates
are all oriented alike larger shifts occur with their magnitude depending on the direction
of incidence and on the polarization of the propagating wave.

2 Theory

The effective medium, theory defines feff as the dielectric constant of the homogeneous
medium that can be substituted to the real medium without affecting the propagation of
the electromagnetic waves. This amounts to say that e~fr should satisfy the null scattering
condition, i.e. it is the solution to the equation

SNifn~i(Ew) -- 0()

with
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where i,, is the polarization vector of the plane wave and f,,• is the nonmalized forward-
scattering amplitude of any of the N, identical particles of the i-th kind when immersed
into the homogeneous effective medium of dielectric constant e.,.

According to Mie, the normalized forward-scattering amplitude of a homogeneous
spherical particle with refractive index n = e1/2 embedded in a homogencous medium ofS. ... .... . .. . .1/ 2

refractive index n74l - in the present case n., = = 4af - is given by

"f"J 23 -,,, (2)
Pi

where the polarization index 1 has been dropped for the sake of simplicity, k = w/c and
A(P) -R(P) W(P) (3)

In eqs. (2) and (3) the W. t's are the multipole amplitudes of the incident plane wave, the
A, 's are those'of the scattered field and

= (1 + iSp,)U ut - ( 1 + Wip )UIU'tI I + 'ffbp ) UJui - ( I + "ffS;,2) UItv't

with
ut = !/jt(y..,), vt = y.h')(yex), Ut = jt(y),

71
W -- 1, Yl =nXt, y= nx.

f'lex1

x ta kp is the size parameter of the particle with radius p and p is a parity index that dis-
tinguishes the magnetic multipoles (p = I) from the electric ones (p = 2). Accordingly,
R"') refers to the magnetic and R2I) to the electric 2t-pole. When jy,4 < 1 eq. (4) can
be expanded in terms of y,, and one gets

-( --•'yexjýi'.-, R(1) 45 -- (e- l , l~ jYea+ 2c Y.'

while the R(P 's for 9> I are smaller. As a consequence, if one lets the size parameter x,
of the particles involved in eq. (1) tend to zero, to obtaii, convergent values for the f,'s,
only the R'2) 's as given in eq. (5) need be considered. then eq. (I) turns into the well
known Bruggeman mixing rule [1

e + =-eff 0, (6)
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where the xi above is the size parameterof any of the Ni spheres of volume vi and dielectric

constant ej and Vi = Njv1/V is the fraction of the total volume of the composite that such
spheres fill. In order to get a dynamical extension of the Bruggeman mixing rule, Stroud
and Pan [41 do not neglect the R~'i tzrm and thus include into the expansion of eq. (2)
also the magnetic dipole term. Since they take Rýn and R"2) in the form of eq. (5), their
mixing rule reads

Vi [ -2-- + ( (e- .- ,ff) 0 (7)
4ci+ 24cf 30 =

and appears as an extension of eq. (6) to rather larger, although still small, sizes. The
mixing rule of Ch~lek and Srivastava [l] lies on the very same approximations but these
authors include the size dependent-terms above only when e is very large - for instance,
this is the case of metal spheres. They also include a size-distribution function \( p) and
write

4-',, + 2f + 'k - '),,) dp 0. (8)
i 4+ 2 Cdf 145 p P

Obviously, the size-dependent terms in eq. (8) assume the same form they have in eq. (7)
when \j(p) = Ng6(pj - p).

Since the only common implementations of eq. (1) are the zero-size approximation,
eq. (6), and the small-size approximation, eqs. (7) and (8), we determined to test the
reliability of the null scattering condition, eq. (1), when applied to larger particles. In
practice, all the calculations we will present in the next section were performed by carrying
to full convergency the exact Mie expansions to the effect of ensuring the inclusion of all
significant contributions to the scattering amplitude, eq. (2). In this way we overcame all
the limitations due to the small size of the particles but those that prevent the possibility
of treating the whole medium through a dielectric description.

In section 1 we mentioned the special kind of correlation that sets on into the space
distribution when the particles undergo aggregation phenomena. Here we will briefly
describe how these cases can, in principle, be treated. Indeed, we presented elsewhere
[7] a suitable approach to the scattering properties of an aggregation of spheres (cluster)
designed to yield the forward scattering amplitude of the aggregate as a whole still in the
form of eq. (2) but for that

A(, -lý -E(9)

where the quantities cjpae) defined in ref. [91, are analogous tothe R(P)'s, eq. (3), for
the single spheres and take account of the specific geometry of the aggregation. If, as it
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often occurs, we have to deal with a dispersion of randomly oriented identical aggregates
and f(e) is the scattering amplitude of any one of them with orientation e, we can sum
over all the orientations and get

8f f(O)de = Nf,

where f on the right hand side is still in the form of eq. (2) but in this case

(P) -. (o) (10)

Thanks to the structure of the summation in eq. (10), the resulting A's are independent of
the particular orientation, Eo, we chose to perform the calculation. The quantities S in eqs.
(9) and (10) are the elements of a matrix that must be obtained by inversion of a square
matrix of order 2 NL( L + 2), defined in ref. [8], where N is the number of the spheres in
the aggregate and L is the value of 9 at which the sums are truncated. Considerations on
the symmetry of the aggregate, if any, can be used to factorize the matrix to be inverted
[10,111; in this respect, the most convenient case occurs when the centers of the spheres
lie on a straight line, for the maximum order of the matrices to be inverted is 2 NL only.
In the next section we will deal with binary aggregates with a truncation t appropriate to
the size of the spheres so that L < 4 has been sufficient in all cases and the computational
effort has been therefore rather low.

As mentioned in the preceding section, we also considered a model composite medium
which, in a sense, is a hybrid between that 9f Bruggeman and that of Maxwell-Garnett;
namely we calculated eff for a composite made of homogeneous dielectric spheres with
e = eD and of spheres with a metal core, of dielectric constant Ce, coated by a thin dielec-
tric layer. The scattering properties of the coated spheres were not described through an
approach based on the boundary conditions at the separation surface but rather by inter-
posing between the core and the coating a very thin transition layer [91 through which

c = c(r) = c, + (3s2 - 2s')a

with r - PM
A = - e and .s=

PO -- PX!

where px is the radius of the metal core and PD the inner radius of the dielectric coating. In
this way we achieved a smooth transition between the two materials as the refractive index
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n -= n(r) is a regular function of r everywhere within the coated spheres. Consequently
eq. (4) must be substituted by [12,61

G~~jP)'ue ~- ( :fp 2 GP)

R)- ( + ,i?6) 2d) f (11)
Ve- (1 + W2)21'1'

where G = G') (x) are now calculated by numerical integration of the radial equations

d2G(P) 2dn ddGt2) [ (+ 1)] G

dC2 nd• d• 6 +2 ___0

with = kr. Of course, when the spheres are homogeneous, £D = cw and eq. (11) reduces
to eq. (4). As a matter of fact, all the calculations we will present in the next section were
performed by using eq. (11), or eq. (4) when appropriate, with no approximation. It
is worth noticing that our previous calculations [9] proved that the introduction of the
transition layer, provided it is thin enough, has no influence on the results.

3 Results and discussion

All the composite media we dealt with in our calculations are two-component ones; the

first component is a dielectric with co = I and the second is a metal with

CA (12)
V(V + ')

where v = w/w,, - = 1/(rJ,), viz. the dielectric material is the vacuum while the metal-
lic component is described by the free-electron Drude constant [131. This choice allows
us an easy comparison with the preceding results of Stroud and Pan [41 and of Ch•lek and
Srivastava [1]. Anyway, we think that a greater sophistication of the description of the

metallic component is of no usefulness within a framework substantially as naive as the
effective medium one.

If we assume the particles to be spherical, eq. (1) becomes

VxfM(E(tf) + (PM/PD) 3 ( 1 - VM) fD(feff) = 0, (13)

where pm is the radius of the metal spheres and PD the radius of the dielectric ones, and
the f's are given by eqs. (2), (3) and (4).
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When the metal spheres are conted by a dielectric layer we have

VfufM(ceff) + (pu/pD)3 [I - VM(lI +cL)1fD(f-1g) =0, (14)

where frc refers to a sphere with a metal core of radius pm and a dielectric coating layer
with external radius

pL( + CL)1 /PM,

and is thus given by eqs. (2), (3) and (11). The quantity CL is defined as

CL = VL/VAM

where vL is the volume of the dielectric layer: in other words CL gives die volume of the
dielectric coating around each metal sphere as a fraction of the volume, vU, of the metal
spheres themselves. Of course

I 1
VM•-Vrn 0 _ CL, < CLm..,Vu< u.,=I + CL -VM

for a given cl and for a given Vp, respectively, so that when cL = 0, i.e. when the
spheres have no coating, we get again the topology of the Bruggeman model, whereas,
when VAt = Vmma or CL = CL.m. we get the Maxwell-Garnett topology.

When the spheres aggregate in pairs we have

V"fCE(') + 2 (pm/pD)'[ I - VwjfD(,e&r) = 0, (1)

where fc is the contribution of one aggregate averaged over the orientations as described
in the preceding section.

It is perhapE worth noticing that eqs. (13)--(15), unlike the two-component implemen-
tations of eqs. (6)-(8), are transcendent equations in ¢er, and thus require some further
caution in seeking for their solutions.

We calculated Eeff according to eqs. (13), (14) or (15) as a function of Vu for-some
values of xM = kp" and of v; -y = 0.01 in all cases. In particular we report in figs. I
and 2 Im[df I as calculated from eq.. (13), and from the two-component implementations
of eq. (6), of eq. (7) with PD = pM,, and of eq. (8) with a 6-like distribution of the radii.
Our main purpose is to show the most important features of the absorption of a composite
medium at frequencies for which the metal component is by itself strongly absorbing.
Therefore, we chose to plot our results for v = 0 01, Fig t, and for v = 0.1, Fig. 2, since,
for many metals, these frequencies occur in the far and in the near infrared, respectively.
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It is worth noticing that bosh our eqs. (13), (14) and (15) and their counterpart according
to Stroud and Pan, eq. (7), show a dependence on the size of the dielectric spheres. When
one assumes £D = 1, i.e. when the dielectric is the vacuum, the problem arises whether its
motre or less minute subdivision into spherical cells may affect the results. As a matter of
fact, we took ZD = kpD = 10-4 but our calculations confirm that the size of the vacuum
spheres has very small influence either when their size is reduced to zero according to
Ch~lek and Srivastava or when it is set equal to the size of the metal spheres according to
Stroud and Pan. As expected, our results are nearly independent of the size'of the vacuum
spheres, indeed, for all the sizes of the metal spheres at which the implementations of the
effective medium theory we deal with can be assumed to work correctly. Of course this
is true as far as crff does not become so large within the range of V,, as to enhance the
size-dependent contributions from the dielectric speres. In practice, the range of VTI both
in Fig. 1 and in Fig. 2 is not too large and yet it extends enough to show the influence
of the size and of the frequency on the transition from a dielectric behavior to a metallic
one. In our opinion xA, -- 0.1 is an appropriate upper limit for the applicability of eq.
(13), viz. it is a practical limit to the size of the grains of a composite medium in order
that this latter, from the point of view of the dielectric properties, could be substituted by
a homogeneous medium. Anyway, on the basis of our calculations we conclude that, for
particles of size greater that 0.1 but rather smaller than 1, the form of lma ,effi from eq. (13)
is still meaningful in the small-VU region. In this connection we recall that eq. (6) should
never be applied when x > 0.01 and that eqs. (7) and (8) cannot be thought of as accurate
when xv = 0. 1, because these equations come out from a series expansion, eq.(5), of the
exact Mie quantities, eq. (4). We notice that in Fig. 2 the curves for xM = 0.1 from eqs.
(7) and (8) coincide with each other and are substantially different from that coming from
eq. (13), while they do not appear at all in Fig. 1 for the approximations on which eqs.
(7) and (8) are bised result in solutions that are physically unacceptable. In fact, these
equations, that art algebraic equations of the third degree, yield values of Im( e,'f] that are
either negative or everywhere vanishingly small or very large even in the low Vu region.

In Figs. 3 and 4 we plot Im[ et] for u = 0.01 and for several values of CL as calculated
according to eq. (14); analogous results were obtained for v = 0.1. It is quite evident that
the correlation of exclusion produced by the dielectric coating around the metal spheres-
has very strong effects even at very low values of cL. Actually, the model described in
eq. (14) prevents any contact among the metal particles and is therefore topologically
akin to the Maxwell-Garnett model. As a consequence, it is not surprising that, when cL
increases, our results tend very fast to those that are typical of the latter model. Figs. 3
and 4 show the results for Zv = 10-4. At this value of xD the contribution of the vacuum
spheres to 6he scattering amplitude is very well approximated by the first of of eqs. (5)

9



and such a small size suggests the idea of a dielectric medium which pervades and fills all
the space around the coated spheres. Even in this case any size of the dielectric spheres
up to XD = ZM proved to be incapable of affecting the results of our calculations from eq.
(14). Of course, a more flexible model than that of eq. (14) can be built by introducing
a distribution function for the thickness of the dielectric coating, including the possibility
of zero thickness. Such a model would prevent the contact among (only a fraction of) the
metal spheres, so that an appropriate choice of the distribution function should ensure a
smoother transition from the results of the Bruggemah model and those of the Maxwell-
Garnett model.

Figures 5 and 6, where Im[(ef] is plotted from eq. (15), for u = 0.01, show the
effect of a complete binary aggregation of the metal particles on the transition of a com-
posite medium to the metallic behavior, analogous results were obtained forzy = 0 1.
This kind of effect proves a quite significant one but it is very strongly increased when
to the correlation of aggregation one also adds the request that all the binary aggregates
b" likely oriented. Even in this case the value of Xo proves to be irrelevant, although the
conceptually most satisfactory choice is that of very small size (in practice XD = 10-4).
Both Figures 5 and 6 show that the percolation undergoes a noticeable shift towards higher
values of Vu when the common orientation of the aggregates is chosen so as their axes
are parallel to the wavevector of the incident wave. This phenomenon is'easily under-
standable if one thinks of the arrangemc.,it above as the one that provides the maximum
of metal-free paths to the propagating radiation. On the other hand, the maximum in the
extinction power of the medium that occurs when the the axes of the aggregates are all
paraliel to the electric field can also be attributed to the arrangement, as this choice of the
orientation maximizes the absorption of the individual aggregates. Of course, less strong
effects should be expected if, more realistically, only a reasonable fraction of the metal
particles. were allowed to aggregate.

The results we discussed above show that our Bruggeman-Mie approach yields mean-
ingful results even when applied to particles with x = 0. 1 and in this respect proves
superior to the customary approaches, eqs. (6)-<8). In turn, our attempt to introduce some
correlation among the metal particles, eqs. (14) and (15), proved too effective, perhaps.
As remarked above, the amount of correlation we introduced into our models is so large
that the results we reported can give only semiquantitative information, i.e. they can in-
dicate the trend one has to expect in the more realistic situations that could be effectively
simulated along the lines outlined above. As they stand, the models we presented in this
paper can give, in our opinion, useful indications on the dielectric behavior of the com-
posite media.
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Figure captions

Figure I: Im(cdff] vs. Vw, from eq. (13) for, = 0.01 andxD = 10-. The results from
eqs. (6)-(8) are also reported for the sake of comparison. The label B denotes the
curve from eq. (6); as, on this scale, several curves are undistinguishable from each
other the labels give xz and the number of the equations that generate the curve.

Figure 2 Same as Fig. 1 but for v = 0.1.

Figure 3 Im[ cff] vs. V.v, from eq. (14), calculated for the values of CL that label the
curves. XM = 0.01, XD = 10-' and v, = 0.01.

Figure 4 :Same as Fig. 3 but for xm = 0 1.

Figure S Im[( e]rl vs. Vu, from eq. (15), for binary aggregates with xZM 0.01,
XD = 10- and v- = 0.01. The unlabelled solid curve refers to randomly oriented
aggregates; that labelled 11 refers to aggregates all oriented with their axes parallel
to the wavevector and the one labelled 11l refers to aggregates with their axes par-
allel to the electric field of the wave which i.s assumed to be linearly polarized. The
dashed curve reports, for the sake of comparison, the results from eq. (13).

Figure 6 Same as Fig. 5 but for x,'= 0. 1.
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Ahrat The most significant results we obtained on the propagation of

elect~romagnetic waves through non homogeneous media are summacized.

A fe-w years- aqo w,- Jevxsed a model scatterer suitable for a systematic

study c~f the optical properties of aerosols and in particular of the effects

.)f the anisotropy and -,t the possible aggregation of the constituent parti-

olipa. Indeed, ,ur model tscatterer is built as a cluster of spnerical objects

0?irbitrary radii and ro~tractVe indexes,* the spheres need not be homoqene-

-i nd heir r-.lati.* poritti.n3 are arbitrary to a large extent. The scat-

sin electrorraoretic waves by nuch composite scatterers is dealt with

throuqh --he tine ot multipole expansions to describe both the incident and

"nhO 3cattered field is well as the field within the component spheres (1, -2J

-,he re:;ult~nq forwar:1 .;catterinq amplitude has very simple transformation

piropertie s under rýtati:on )t the coordinate axes. Th'is allows us to calculate

very eanily the marsoi ptooal properties of a low-tenaity dispersion

Af clustern even when they are randomly oriented. In fact, we are able e.g.

to 3tudy the changes of the spectrum of a dispersion of spherical particles,

both hcmoaoneous and non-homogeneous [3,41, when they undergo various stages

if aqgreqsation and even when they zhancle their mode of aggregation in, analo-

7y to what happennsi :neorical reacttions (51.

In tne last year we started an attempt to extend 6ur study to intermedi-

ite and hiqh-'lenLt'j .!.:per31cn3 through. a modified .'ersion of the effedtive

:nedium theories ý6( . Ffsentially the ef fect ivp medium theories substitute the

3:otual1 dizoersion wit h an ef fecotvie rned,,um who.34 dielectric properties are

-alculated so as t-, oorensate exactly for the scattering produced by the

particl.es. Cur parti:oolar work in this field consists in treating a disper-

sion of metal spheres with ilze-parameter bigger than that usually deal' t

with within the Bruage~mann schemre [71 and yet sufficiently small to ensure

the validity of the di-lectric description of the medium. Accordingly we used

the full Mie expansion and as a further improvement included some kind cf
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correlation e.g. that produced by aggregation phenomena or by an exclusion

hole around each sphere. This amounts to using a mixed scheme midway between

that of Bruggemann and that of Maxwell-Garnett. Some of our preliminary re-

sults will be illustrated in Section 3.

2. Theory~

All the information' on the propagation of electromagnetic waves through

a low-density dispersion of scatterers is contained in the matrix of the re-

fractive index (8]

2f

where the sum runs over all the scatterers within the volume V and

fy .- L. ~ u;{,j i ep-i ~ " ý 2)

pLM

In eq. (2) u,, is the polarization vector and fv, the fcrward-scattering am-

plitude of the v-th scatterer; in turn the W") LM *s are the multipole am-
plitudes of the incident plane-wave field and .he a are their counter-

parts for the scattered field. The superscript p is a parity index which dis-

tinguishes the magnetic multipole fields (p-1) from the electric ones (p-2)

(9} . When the scatterer is a cluster of spheres the mrultipolo amplitudes of

the scattered field are

- L~ 'I.W. U

where the S's are defined in ref.[31. The most important feature of the S 'a

is that under rotation of the Coordinate axes they transform according to the

representations of the full rotation group. As a consequence, once the S's

are known for a cluster of given orientation they are immediately known for

any other cluster of different orientation, and the sum in eq.(1) can be per-

formed analytically.

For intermediate and high-d-nsity dispersions, the procedure outlined

above does not yield reliable results because the multiple-scattering pro-

cesses become more and more important. A possible way to overcome this diffi-

culty is to resort to the effective medium theories such as the well-known

mixing rules of Bruggeman, and of Maxwell-Garnett'. The general principle on

which these rules are based was outlined in sect. I and, as our work in the

field is still in progress, we defer our further comments to the next section

where some our preliminary results will be presented.
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3. jklultm and Dite,,vqu in,

Fig. I we report the real (1i) and the imaginary part (ib) of 74, for a
low-density dispersion of binary clusters both oriented alike (solid lines)

and at random (broken lines) versus the size parameter, x-kp, of the constitu-

ent spheres, which are homogeneous with n-X.3. All the curves are normalized

to the corresponding quantities of a dispersion of independent spheres with

the same density and refractive index and show not only a noticeable depen-

dence on the orientation but also that for a cluster of given geometry there

exist a value of the size at which this dependence disappear'. Our experience

suggests that this pseudo-spherical behavior is bound to appear for some value

of the size when the clusters have a oe~inite symmetry.

,.-

Fig. la Fig. lb

As anticipated in sect. 1, we also deilt with dispersions of layered

npheres which we treated As explained ;n ref. [3. In Short, we kept constant

the dielectric function within each layer and between each pair of them inter-

posed a transition layer, as th'.n as possible, within which the radial depen-

dence of the dielectric function is taxen so as to ensure the continuity of C

and of its radial derivative. we consiaered in this way spheres with a diffuse

surface, metal spheres with a dielsctr:c or metallic coating and dielectric

spheres w.th a metallic coating. The dielectric function of the metal was de-

scribed by a freeielectron Drude funct-on, while that of the dielectric was

described by a damped oscillator function. The most striking result is shown

in fig. 2 which refers to spheres of MaO coated with Al with a total radius of

50A. It is quite evident that the absorption peaks of the dispersion of single -

spheres (solid lines) shift according to the thickness of the coating: thus
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10. this feature can be, in principle,

ooi 003. used to obtain a selective absorp-

is 0.01 tion at any frequency within d given

W- 0.01 range. Nevertheless this effect can

005 be greatly weakened if a considera-

ble percentage of the spheres aggre-

gate (broken lines).

At last we give here an antici-

pation of our present attempt to'use
at best the potentialitieo of the

effe:tive dielectric constant meth-
.02

ods beyond the mixing ruleb of

Bruggeman and of Maxwell-Garnett. In

fig. 3 we present our results for

one of the conceivable intermediate

models between that of Bruggeman and

that of Maxwell-Garnett. This model
consists of an admixture of metal

and dielectric spheres (these latter

with dielectric constant E-1).
0.25 0.3 0.35 V5 Around each metal sphere we put a

exclusion hole in, the form of a
Fig. 3

layer of variable thickness with
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dielectric constant E-l.The curves in fig. 3 are labeled by the percentage of

volume occupied by the exclusion holes. The curve labelled 8 refers to the

conventional Bruggeman rule. All the spheres were dealt with through the full
Mie theory. The main result of our calculation is a dramatic shift of the

percolation threshold as a consequence of the correlation of exclusion we

forced on the system.
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ABSTRACT

A selection of eluters composed of 20 spheres, simulating irregularly shaped
particles often observed is powders, are used to model a low density monodispereed
aerosol for which the absorption coefficient is calculated. Also calculations will be
shown for small clusters ( composed of 2 spheres) having the same optical
characteristics as those of existing experimental data with which compariaon will be
made.

L Introduction. Of Such a complex aatterer can be performed
following the approach outlined in previous

The fact that "eool particles, but for workl"- Having obtained in this manner the
few exceptions, awe not spherical, nor can be optical properfties t a single scatterer then the

described as apherical in consideration a( their next step is to calculate the macroscopic opti.

optical properties, i well known. It is 2ot cal coastants for the propagation through a

surprising that the optical behaviour o at asl model aerosol. We sill show that our compu-

particles as calculated using Mie Theory i 60 tation for two spheres agse with experimental
dam consistent with the experimentally resultsM, theo we will discuss the cue of some
observed data, since the Mie theory is based complex structures which are types found
upon the sphericity 0( the scattere. It ; how- commonly in powdersull-lq

ever important to achieve a reasonable court.
dence in solving the probem of scattering by 2. Theory.

an irregularly shaped particle. The problem is
not easily solved and special difficultie arie We refer you to other papers for the
when the scatterer is equal to ar larger than details of the computations and their justifica.
the wavelength of the incident light and when tions, ssell-1 , here simply accept that we
the index of refraction of the surrundinig can write the extinction cross section of a
medium differs more than for a small amount, whole cluster, where a duster is the geometri-
We have developed a formalism whkh allows cal description of a particle, in the form
us to describe an irregularly shaped patti.
clIell , and the calculation Of the properties 0 < tslv > (
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whene the matrix 3 depends only on the meaws for which we compnre. ronowing we
structure ci the cluster. reproduce the txperimental ssup.

The matix 5 incldes all the informnation as
the scattering POwer of the cluster as a whole (
its elemeate depend only an the scattering .

power ofthe spheres of the cluster and on the
relative positions at their centaen). In eql.(2), *
the mocats i I and T were defized pmswvi-.-
c, 5isf. Matuix I ism the role of referrnag the 41 £
amplitudes of the maltipole fields scattered by
eauh sphere to the Origin of the Coordinates.
The matrix T ofthe form-

the following graph shows noe calculated d~aaT41..11 T42,3

which must ehcalculated as ttheiavme f the
matrix;

and which is dseria~m de ip As streesre of ike 2 /
cluster . The, matrix V repreosets the
asmplitudee of the multipole fields and its ale.
meats mae" eq.(l) dependent on the direction 0
of incidence. The matrix N describes in the
vscinityOf the surface ofeSockephere the Mai. 1 i1s
tipole Wield scatterd by the4 other sphere of h
the cluster. The matrix X represents the 30 Sphos. We will now cotixider cluaw
crs terms of the multipols fields. And finasly t~el cm,Aosed of 20 spheres in order to simou-
the matrices l10 1 nnd1'"I we the scettering It som ireual shaped aggregations often
powe of the single spheres composing the clue. fovnd in powdorel'O in the figurese we report
too '( identical in physical meaning to the t'he quantities -fy n r--?,/,.sa for
terms A sad U in Von De Hulst'I 4 ) several direction of incidence asa function Of X

the site paramete; where j. i the absorp.
S. R~esults snd Diseiselon tics cosficient of a dispersion of spheres of

six# paraametr x.,-201/3 X, whose number den-
Two spheres - touching. The first set sity equals that of the dispersion of clustern.

of data will be that of the two spheres, which The quantity -r is the absorption coefficient tor
will be compared with the experimental data the cluster randomly oriented &Ad -y. depends
of Shuermuan and WangleI. The spheres are on the orientation of the clusters with respect
touching, the quantitwe which we bave corn- to the incident plane-wave. The material'of
puted are the complex forward scavteing the spheres composing the cluster in All cases
amplitude IS(O)l as a function of the sine was chosen to be homogeneous isotropic,
parameter Its - 2wo/AI of the cluster. The dielectric, and nondiapersive with refractive
geometry sand all tbi parameters we have used index a-1.3 and r=nlly all the spheres in the
mand that we report we the sune as the erperi. clusters are identical.
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geometric features are sbows above. Is the and its geometrK fesaurse we shown above. In
graph below the cluster r (broken curve) and the graph below the cluster r (broken curve)
r. (solid lines) versus X for several directions and r. (solid liaes) versu x for several dec.
of incidence for a dispersion of stripe. The tion of incideace for a dispersion of empty
incident plane wave is circularly poarizsed. rectangles. The incident plane wave is circ.
The angles of incidence (tsta•.) , in degrees, larly polarised. The angle, of incidence
Labeling the I. curves ae related to the com- (teta,) , is degrees, labeling the r. curves
mon orientation of the clusters are relnted to the common orientation of the

clusters.
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Density dependence of the absorption coefficient
of a dispersion of spherical metal particles*

E. Fucile, P. Denti, R. Saija, F. Borghese
UniversitA di Messina, Istituto di Struttura della Materia

Salita Sperone 31, 98166 S. Agata-Messina, ITALY

In this paper we make an attempt to assess to what extent the absorption coefficient
of a dispersion of spherical scatterers is influenced by the multiple scattering effects. To
this end the scatterers of the dispersion are considered as aggregated in pairs (even if they
are not in contact). The field scattered by each pair is the computed by means of a the-
ory we developed in the last few years just to deal with aggregates of spherical scatterers.
Of course, the field scattered by each pair depends on its orientation with respect to the
incoming field as well as on the separation of the component spheres. By means of the
theory cited above, we are able to sum analitically over the orientations to get the a scat-
tered field that is still a function of the distance of the spheres composing the pair. At this
stage we make an weighted average over the distances using as a weight the pair correla-
tion function for a dispersion with the density we are dealing with. As a result we get the
field scattered by each sphere dressed by the effect of multiple scattering processes pro-
duced by the other particles. Of course this procedure yields only a first approximation as
only pair effects are included while those produced by triplets and higher order multiplets
of particles are neglected. We are able to show that the results we get amount to solve
iteratively the exact Foldy-Twersky integral equation up to the third order iteration.

"Based on work supported in part by the U. S. Army European Research Office through Contract
DAMA45-86-C-0003 and in part by the Consiglio Nazionale delle Ricerche through the Gruppo Nazionale
Struttura della Matcria
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Reliability of the theoretical description of electromagnetic scattering
from nonspherical particles.

F. Borghese, P. Denti, R.Saija
Universitk di Messina, Istituto di Struttura della Materia,.
P.O. Box 57, 98166 S. Agata Messina, ITALY

0.1. Sindoni
Chemical Research Development and Engineering Center.
Aberdeen P.G. 21010 Md, USA

It is well known that the most common aerosols are composed either of,
irregularly-shaped particles, or of spherical particles that may undergo
aggregation phenomena which in their turn give rise to effectively non iso-
tropic compound scatterers. It is therefore not surprising that the inter-
pretation of the optical behaviour of aerosols based on the well known Mie
theory are often unsatisfactory.

A few years ago we devised a method suitable to calculate the scatte-
ring of electromagnetic waves form a cluster of spherical scatterers of

.known geometry. Our purpose was to account for the effect of the anysotropy'
of the scattering particles without undue computational effort and to see
to what extent a truely irregularly-shaped particle could be approximated
by a simpler system.

To describe the scattering by such a compound scatterer we ifiake full
use of the possibility of expanding both the incident and the scattered
field in a series of spherical multipoles. As a consequence we are able to
describe both the electric and the magnetic multipoles on the same footing
without introducing any approximation but the truncation of the multipolar
expansions-in order to get a finite set of equations.(1),

The calculations we performed on clusters of various geometry show,
as expected, a noticeable dependence on the extinction cross section (as
well as of the Scattering cross section) on the polarization and on the
direction of incidence of the plane wave. Furthermore, thank to the trans-
formation properties of the spherical multipoles under rotation, we were
able to show that the forward-scattering amplitude of any cluster depends
analytically on the direction of incidence in a rather simple way.

All the features mentioned above are of invaluable help when comparing
the results of our approach to the experimental data. Nevertheless, before
we make the actual comparison with the experimental measurements of Schuer-
man,, Wang and Greenberg(2) we recall some facts about the convergency of
any calculation based on multipolar expansions.

For a single sphere, of radius b, the convergency of the calculations
depends on the product x=kb, the so called size-parameter of the scatterer,
k being the magnitude of the incident wave vector. If LH is the maximum
multipolar order entering the calculations, the convergency requires LMrX.
For a cluster of spheres we showed that the parameter corresponding to x is
xo=kbo , bo being the radius of the smaller sphere that can include the
whole cluster. Even in this case a good convergency is achieved only for
LM>Xo. In any case scattering objects with the same x (or xo) have the same
scattering features, provided, of course, that the refractive index is. non
dispersive.

In figure I we show the experimental setup used by Schuerman and Wang
to perform their mesurements on single clusters as a function of the direc-
tion of incidence. We notice that to ensure the reproducibility of the
results only the polarization indicated in figure 1 can be used.
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Fig. 1

In figure 2 and 3 we report the results of our calculationls. for both
orthogonal and parallel polarization. for a cluster of two spheres as a fun-
ction of the direction of incidence, together with the corresponding experi-
mental results or Schuerman, Wang and Greenberg(3). More precisely, on the
axes are reported the real, 0, and the immaginary, P, parts of the forward
scattering amplitude of the cluster.

FIg. 2 Fig. 3
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Both figure 2 and figure 3 show that the agreement between the experimental
and the theoretical results is rather good. We state this also on the folio-
wing considerations. First. Schuerman and Wang(3) extimate the experimental
error in about 10% in magnitude and 120 in phase. Second. the angular depen-
dence of the forward scattering amplitude can be determined analytically,
and our theoretical curves are consistent with such angular dependence.

We want Only to stress that according to the parameters reported in

fig.2 and fig.3 the convergency of our calculations would require at least
LH=

6
. Actually we have to use LM=1O for both cases. Any further increase of

LM has no effect on the results thus proving that we get the best converge-
ce achievable through this kind of expansion of the field.

Fig. 4
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In figure 4 we report the results ror a cluster of two spheres whose

distance is gradually increased. On account of the considerations reported
above, when x0 15 the convergency would require Lft30. This cannot be done
without, using delicate numerical procedures which in turn require a very

large and fast computer. For this reason our present results fit satisfac- ..

torily the experimental results only for small values of xo. although the
uncertainty of the experimental data must, even in this case, be taken in-

to account.

In conclusion we can state that our approach is able to describe cor-
rectly the scattering from a cluster of spheres. At present we are impro-
ving the programs to include the possibility of extending the multipolar

expansion to very high values of .M, In any case both the theoretical and
the experimental approach mutually support the respective Findings.
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